

< 4.1 Introduction >

* Incompressible flow over airfoils

Prandtl (20C 초) → Airfoil (2D)

 \rightarrow Wing (3D)

→ Body

Airfoil : any section of the wing cut by a plane normal to y-axis

< 4.2 Airfoil Nomenclature >

* NACA (National Advisory Committee for Aeronautics) Series

< 4.2 Airfoil Nomenclature >

* NACA (National Advisory Committee for Aeronautics) Series

NACA 4-digit series

* NACA2412

2 : max. camber = 2% of the chord 4 : the location of max. camber = 40% of the chord 12 : max. thickness = 12% of the chord If the airfoil is symmetric, it becomes NACA00XX

NACA 5-digit series

* NACA23012 2 : 2*0.3/2 = 0.3 design C_L 30 : 30/2 % = the location of max. camber 12 : max. thickness = 12% of the chord

< 4.2 Airfoil Nomenclature >

* NACA (National Advisory Committee for Aeronautics) Series

6-digit series laminar flow airfoil

- * NACA65-218
 - 6 : series designation
 - 5 : min. pressure location = 50% of the chord
 - 2 : design $C_L = 0.2$
 - 18 : max. thickness = 18% of the chord

Other notations

- * SC1095
- * VR12

< 4.3 Airfoil Characteristics >

* 1930~40 NASA carried numerous experiments on NACA airfoil characteristics (Measured C_I, C_d, C_m \rightarrow 2-D data)

* In the future, new airfoils should be designed and tested (consideration of aerodynamic, dynamic & acoustic limitation)

< 4.3 Airfoil Characteristics >

[Def.]

 α , angle of attack : the angle between the freestream velocity and the chord

[Note]

- **1**. α_0 is not usually a function of Re.
- 2. C_{I,max} is dependent on Re.

* Aerodynamic drag = Pressure + Skin friction ↓ drag drag Sensitive to Re. (form drag) Profile drag

* AC (Aerodynamic Center) [Def.] The point about which the moment is independent of AOA Subsonic : AC=c/4

Supersonic : AC=c/2

 \rightarrow

< 4.4 Vortex Sheet >

Kutta-Joukowski Theorem

- * Kutta (German), Joukowski(Russia)
- * Incompressible, inviscid flow

 $\mathbf{L} = \rho_{\infty} \mathbf{v}_{\infty} \boldsymbol{\Gamma}$

< 4.4 Vortex Sheet >

- * $\gamma(s)$ = the strength of vortex sheet per unit length along *s*
- * From Biot-Savart Law $d V_{\theta} = -\frac{\gamma ds}{2\pi r}$
- * Velocity potential for vortex flow

$$V_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta} \rightarrow d\phi = -\frac{\gamma ds}{2\pi} \theta$$

* Velocity potential at P

$$= \frac{1}{2\pi} \int_{a}^{b} \theta \gamma ds$$

< 4.4 Vortex Sheet >

Figure 4.14 Tangential velocity jump across a vortex sheet.

* Circulation around the dashed path

$$\begin{split} \Gamma_1 &= \gamma ds = \oint \overrightarrow{V} d\overrightarrow{l} \\ &= -\left\{(v_2 - v_1)dn + (u_2 - u_1)ds\right\} \\ &= (v_1 - v_2)dn + (u_1 - u_2)ds \end{split}$$

* If
$$dn \rightarrow 0 \quad \gamma ds = (u_1 - u_2)ds \quad \Rightarrow \quad \therefore \gamma = u_1 - u_2$$

(Note)

The local strength of the vortex sheet is equal to <u>the difference (jump) in</u> <u>tangential velocity</u> across the vortex sheet

< 4.4 Vortex Sheet >

* "Vortex Sheet" - Application for inviscid, incompressible flow

Figure 4.15 Simulation of an arbitrary airfoil by distributing a vortex sheet over the airfoil surface.

* Calculate g(s) to form the streamlines with a give airfoil shape

(Note)

"Vortex sheet method" is more than just a mathematical device; it also has a physical meaning

ex. : Replacing the boundary layer ($\nabla \times \overrightarrow{V} \neq 0$) with a vortex sheet

< 4.5 The Kutta Condition >

* For a circular cylinder,

* For a given α , \rightarrow should have only one solution

< 4.5 The Kutta Condition >

* From the experiments, we know that the velocity at the trailing-edge in finite. → Kutta Condition

 $\gamma(TE) = V_1 - V_2 = 0$ V(TE) = finite

* The <u>circulation</u> around the airfoil is the value to ensure that the flow smoothly leaves the trailing edge.

< 4.6 Kelvin's Circulation Theorem >

- * Assume) 1. Inviscid
 - 2. Incompressible
 - 3. No body forces

 $\frac{D\Gamma}{Dt} = 0 \quad \Rightarrow \text{ The time rate of change of circulation around a closed curve consisting of the same fluid elements is zero}$

Ex) Starting vortex

